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1. Introduction 

Rural to urban labour migration and the high 
rate of urban unemployment continue to create 
serious economic and social problems in the 
developmental processes of many African countries. 

The relationships between migration and urban 
unemployment and the consequences of their inter- 
action on labour mobility are complex and stand 
in need of clarification and quantitative analysis 
afforded by mathematical modelling, but few such 
models have been presented. Todaro (1969) has 
constructed such a model from the point of view 
of an economist. It is essentially a deterministic 
model. Our model, which is thoroughly probabilis- 
tic, is more sociological in its orientation, 
although we take heed of economic considerations. 
It predicts the pattern of movement of the labour 
force and can be used to compare the probable 
consequences of social and economic policies. 

2. The Model 

Suppose we consider the labour force in an 
African country as being divided into six states, 
as follows: 

1. Unemployed (or underemployed) 
in the rural sector; 

Rural 2. Employed in agriculture; 
3. Employed in the rural sector, 

but not in agriculture; 

1Urban Unemployed in the urban sector; 
5. Deployed in the urban sector; 

Rural or 
6. Departed from the labour force. 

Urban 

Further refinements can be envisaged, but it 
would not be fruitful to attempt a finer division 
than can actually be observed. We assume that it 
is possible to count the number of people who move 
from each state to each other state and thereby 
to estimate the probability of making such a move. 
This information we summarise in a matrix of 
transition probabilities, P=(pi3), = 1,...,6. 

The model as formulated so far is, of course, 
a finite Niarkov- chain. But this structure is too 
coarse. It does not take into account variation 
of time of stay in each state, which is an 
important factor in a realistic analysis of 
migration. Thus, it is a well-known fact of social 
life that the longer one has been in a particular 
state the less likely one is to move to another 
state (the so- called Axiom of Cumulative Inertia) 
(McGinnis, 1968). 

We incorporate these realities into our model 
by assuming that for every pair of states (i.j) 
there exists a distriuution Fi.(t) = Pr going 
from i to j on or before time Jt, given that we 
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are going to make that move For such a process 
one can calculate numerous quantities of interest, 
auch as the means and the variances of first 
passage times (the times to from state i to 
state j, for example the time for the unemployed 
country boy to get a job in the city). 

If the "embedded farkov- chain" of our process 
is ergodic, we can calculate the limiting pro- 
babilities of each state, the proportion of time 
which the process spends in each state, in the 
long run. 

For those calculations, we need to know only 
first and second moments of F1.(t), which we can 
estimate by collecting data on how many people 
moved from i to j and how long they waited before 
doing so. 

3. A further assumption on the 

We have assumed, at least tentatively, that 
the Fij(t) are gamma distributions, with density 

c) X 
For the gamme distribution is a 

"decreasing failure rate" distribution, consistent 

with the "axiom of cumulative inertia." For V =1, 
it reduces to an exponential distribution. Since 
some of our transitions will no doubt resemble 
poisson processes, this generality of the distri- 
bution form is appropriate. 

We can estimate from a sample the parameters 
of the F..(t), evaluate them by numerical integra- 
tion, an.3so evaluate the renewal quantities. 

W(t) = P x F(t)) 
(The "x" denotes element by- element matrix 
multiplication). 

W..(t) is the mean number of moves into j in 
that we are in state i at time 0, so 

that knowledge of W(t) is equivalent to knowledge 
of how many people are in eaoh state at time t if 
we know how many people were in each state at time 
O. 

4. Causal Structure 

The semi-Markov model which we have presented 
is descriptive, although in a quantitative fashion. 
Given data, it will give us information about what 
is likely to happen. 

We can, as has been suggested by Ginsberg 
(1972), incorporate causal structure within the 
semi - arkov framework by expressing some of the 
parameters of the Markov process as functions 
of observable "exogenous" variables and seeking to 
estimate the parameters of these functions, which 
we shall call "causal functions." 

Considering the transition matrix, we can 
think of the P.. as being functions of known 
form of variables x1, x determined 

by parameters B1 Br which we must estimate. 



We might have, for example, 

= private investment in the rural 
sector; 

'= public investment in the rural 
sector; 
private investment in the urban 
sector; 

x4 = public investment in the urban 
sector; 

x5 = investment in education in rural 
areas; 

x6 = investment in education in urban 
areas. 

We shall take the same attitude toward the 
moments of F (t), or specifically, for reasons 
which will come out presently, the unconditional 
mean waiting times. 

where M is the matrix of means of F (t). 

In our initial investigations we assume 
that the causal function$ are of the form 

P. 1 

If we have estimated transition matrices 

P =1, N, where the values of might 
perhaps correspond to political or geographical 
divisions, and we have corresponding values of 

= (z1, (t) (P we shall have N 

equations in r unknowns, an over determined 
system which we can solve in the least -squares 
sense for the B's. 

Ginsberg (1972) Shown how one can get 
maximum likelihood estimates of various types of 
causal functióna. Unfortunately, his specific 
proposals are not directly applicable to our case. 
He thinks of people making choices of where to 
move to (or not to move at all). In Nigeria for 
example, his states might be the nineteen states 
of the Federation. Ginsberg regards the P.. 
as increasing functions of the attractiveneéa 
of destination j and decreasing functions of a 
distance, geographical, financial, or social, 
(d..11 Given our definition of states, the 

of distance is not relevant, and our 
people have limited Choice. Few of them would 
choose to become unemployed, and fewer still 
would choose to quit the labour force by illness, 
death, or going to jail. 

5. The Model as an Instrument of Policy 

We should like social analysis to be helpful 
in the rational of social policy. If 
we can express at least some of the parameters 
of the semi- Markov process as functions of 
variables which are accessible to policy, we can 
move in this direction using the techniques 
of Markov- renewal programming. 

In this model, or from our point of view, 
submodel, if we make a move from i to j in time 

we receive a reward, positive, negative, or 
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zero (which in general is oonditional on 
and Li t). By an iterative of the dynamio 
programming type, we can find a "policy", i.e. 

a set of parameters which will maximise either 
average reward in the long run, if the embedded 
Markov -chain is ergodic, or expected total reward 
in transient states, if there are absorbing 
states. 

6. Some Preliminary Results of the 
Programming Model 

We have coded the renewal 
programming for a computer, in APL, and tried it, 
using the data shown below. The transition 
probabilities and mean waiting times in Tables I 
and II are from a study done by one of our students, 
Mrs. Ezim Okeke. She considered only five states, 

1. Employed in a rural area 
2. Unemployed in a rural area 
3. Employed in au urban area 
4. Unemployed in an urban area 
5. Departed from the labour force 

She regarded state 5 as being an absorbing state 
(dead or retired). 

The transition probabilities might have been 

affected factors such as seasonal changes in 
employment - occasioning movement away from 
farming to trading. 

Table I: Matrix of Transition Probabilities (PO 

0.79 0.01 0.10 0.05 
0.03 0,87 0.00 0.08 
0.10 0.18 0.65 0.03 
0.15 0.10 0.16 0.55 
0 0 

Table II: Matrix of Waiting Times 

10.90 
0 0.05 0.05 

0.10 0.65 0.07 0.18 

0.45 0.05 0.45 0.05 
0.05 0.48 0.20 0.27 

0 

0.05 
0.02 
0.04 
0.04 

1 

1.00 
0.85 
0.60 
0.65 

100.00 

The only reason that observational data are 
needed at all for the renewal program 
algorithm is that in practice we want to fix some 
of the transition probabilities, saying that they 
represent phenomena which are beyond the reach 
of public policy. 

The matrix displayed in Table III below 
tells the computer program which probabilities 
are to be fixed: these are the non-negative 
entries which, obviously, are identical to the 
corresponding elements of the transition 
probability matrix of Table I. The negative 
numbers in Table IV tell the program where to 
calculate new probabilities in these positions 
as elements of an optimal policy. 

In this case, in which state 5 is absorbing, 
the optimal policy is a matrix of transition 
probabilities and a vector of unconditional mean 



waiting times which will maximise the total reward 
earned in passage through transient states. The 
reward structure is defined by a matrix, an 
example of which is displayed in Table IV. 

0.95 
0.98 
0.10 

0.15 

Table 

0 
0 

0.18 
0.10 

III: 

0- 
0 

0.68 
0.71 

Computed Policy 

0 0.05 
0 0.02 
0 0.04 
0 0.04 
0 1 

0.8551 
0.098 
0.306 
0.142 

1 

Table IV: Reward Matrix 

80 -20 -10 -800 o 
30 -20 10 -600 
20 -10 20 -400 
160 20 30 -800 
0 0 0 

The reward matrix expresses our value 
judgments as to the relative merits of the 
possible transitions. The matrix of this example 
says that it is good to stay on the farm or to 
return to it; bad to move to the city; worse to 
move to unemplóyment or to lose one's job, good 
to get a job. We are indifferent to departure 
from the labour force. 

CONCLUSION 

The semi- Markov model enjoys the virtues of 
flexibility and adaptability. The model does not 
care what or how many states it has; neither does 
it care about our choices of the functions by 
which we relate the parameters of the 
process to other observable variables or the means 
by which /estimate the parameters of these functions: 
we can choose functional forms and estimation 
procedures as the data and our intuitions about 
the pertinent social processes direct. Having 
established such dependencies to our satisfaction, 
we can use the Markova- renewal programming 
algorithms to explore the consequences of resource 
allocation decisions, thus making, at least 
potentially, practical use of the model. 

Human beings are free agents, and their 
behaviour is stochastic. The semi- model 
reflects this reality. Within its probabilistic 
framework we can incorporate modelling of causal 
structure, expressing some aspects of behaviour 
as functions of observable, "exogenous" variables 
while leaving others to direct statistical 
estimation. 

We cannot expect that these techniques will 
have the neat usefulness that linear programming 
bas to the operation of a refinery; nonetheless, 
any means by which quantitative estimates of the 
probable effects of policy may be had should not 
be scorned. The makers of public policy patently 
need all the help they can get. A famous example 
of how a well -meant policy can miscarry is the 
attempt of the Kenyan Government to reduce urban 
unemployment problem by subsidising wages, 
agreement with employers to increase their labour 
force. Promptly many, many people rushed to urban 
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areas, and the urban unemployment problem became 
worse than ever. It is conceivable that the 
construotion of urban housing by the Nigerian 
Government has had a similar side effect: more 
shelter available leads to more relatives coming 
to town. 

These plans were made by reasonable men doing 
their best to choose the least evil, but had they 
had more means of extrapolation they might have 
done better. 
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